ITに関する製品や企業の情報総合サイト TechTargetジャパン ホワイトペーパー ダウンロードセンター
TechTarget
ニュース
製品情報
キーマンズネット
ニュース
製品情報
TechFactory
ニュース
製品情報

ホワイトペーパー

ネットアップ合同会社

製品資料

ネットアップ合同会社

AI用データパイプライン構築術:エッジ、コア、クラウドでI/Oを高速化するには

あらゆる業界の企業がAIの導入を急いでいるが、そこで扱われるデータの管理に課題を抱えるケースも多い。エッジからトレーニング、アーカイブに至る一連のデータパイプラインを整備するには、どのような方法が最適なのだろうか。

コンテンツ情報

公開日 2019/02/07 フォーマット PDF 種類 製品資料
ページ数・視聴時間 18ページ ファイルサイズ 1.73MB

要約

 自動車業界や小売業界を筆頭に、いまやあらゆる企業が、AIを活用しようと躍起になっている。しかし、いざ運用準備に取り掛かると、複数のデータリポジトリ間でのデータ移動やコピーが難しかったり、大規模かつ動的なデータセット全体での高いパフォーマンスと保護を実現できなかったりと、データ管理に起因する問題に直面する企業は少なくない。

 その原因の1つに、IoTセンサーやPOSデバイスからのデータ収集とエッジ分析、前処理、トレーニング、導入、アーカイブという一連のデータパイプラインが整備できていないことがある。中でもボトルネックになるのがコア部分に当たる、データ準備/トレーニング/導入のフェーズで、それぞれに固有のI/O要件に対処する必要がある。

 例えばエッジではデータ管理の階層化、トレーニングではストリーミングの迅速化、導入では推論モデルをDevOps型のリポジトリに格納する際のレイテンシなどが課題となるが、いずれでも重要な役割を果たすのがストレージの性能だ。オンプレミスもしくはクラウドでのAI/ディープラーニングパイプラインを構築するヒントを、本資料で探っていこう。

アンケート

※「アンケート回答」「続きを読む」には、下記ボタンを押して会員登録あるいはログインしてください。