コンテンツ情報
公開日 |
2019/10/07 |
フォーマット |
PDF |
種類 |
プレミアムコンテンツ |
ページ数・視聴時間 |
4ページ |
ファイルサイズ |
413KB
|
要約
人工知能(AI)エンジンの機械学習に利用する学習データ(教師データとも)は、「量」が重要だと考えられてきた。その考え方自体は今でも通用するが、状況は変わりつつある。AIエンジンが誤った判断を下すことが問題になり、判断結果を左右する学習データの「質」がより重視されつつある。
質の高い学習データを用意するには、収集したデータから“ゴミ”となる不要なデータを排除し、AIエンジンの用途に合わせてデータを分類する必要がある。こうしたデータクリーニングの過程には、従来データサイエンティストを必要としていたが、自動化ツールも登場している。
TechTargetジャパンの人気連載を再構成した本資料では、AI技術の活用を積極的に進めるFacebookやIBMをはじめ、各企業が学習用データを用意するために実践している手法を紹介する。